Abstract

AbstractViscous internal damping in joints of high speed rotor systems causes instabilities above a certain frequency of revolution. In the majority of cases a nonlinearity adjusts the stability margin towards higher frequencies.In this paper an analytical solution of a nonlinear four degrees of freedom rotor model with internal damping is proposed, which enables to clearly analyse the influence of shaft stiffness, connection stiffness, rotor mass and shaft mass. The steady state solution of the unbalance case and the stability boundaries are deduced analytically. The stabilizing effect of the nonlinearity is shown. The analytical solutions are in good agreement with numerical results obtained by FERAN, a rotor dynamic simulation tool. A model, representing the rotor–shaft connection with an o–ring has been analyzed by a hydro pulse rig. Beneath the linear way, two further approaches to describe the measured hysteresis, a cubic and a bilinear force law are shown in the paper. The different analytical and numerical results for the whole rotor system with these three approaches are compared. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call