Abstract

We propose an ultrasensitive refractive index (RI) sensor based on the nonlinear index of refraction in a microring resonator coupled to waveguides in an add-drop configuration. The nonreciprocity caused by the difference between the nonlinear self-phase and cross-phase modulation leads to a bifurcation of the optical intensities for two counterpropagating modes. The magnitude of the splitting depends sensitively on the resonance frequency of the resonator, and hence, the effective index of refraction. This nonlinear system is up to two orders of magnitude more sensitive to RI changes than the theoretical sensitivity of a linear microresonator RI sensor. We discuss potential material implementations of the microresonator and the detection limit for these materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.