Abstract

Benefiting from trigonometric and hyperbolic functions, a nonlinear megastable chaotic system is reported in this paper. Its nonlinear equations without linear terms make the system dynamics much more complex. Its coexisting attractors’ shape is diamond-like; thus, this system is said to have diamond-shaped oscillators. State space and time series plots show the existence of coexisting chaotic attractors. The autonomous version of this system was studied previously. Inspired by the former work and applying a forcing term to this system, its dynamics are studied. All forcing term parameters’ impacts are investigated alongside the initial condition-dependent behaviors to confirm the system’s megastability. The dynamical analysis utilizes one-dimensional and two-dimensional bifurcation diagrams, Lyapunov exponents, Kaplan–Yorke dimension, and attraction basin. Because of this system’s megastability, the one-dimensional bifurcation diagrams and Kaplan–Yorke dimension are plotted with three distinct initial conditions. Its analog circuit is simulated in the OrCAD environment to confirm the numerical simulations’ correctness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call