Abstract

Purpose This paper aims to present a non-linear mathematical model-based routing protocol for wireless body area networks (WBANs). Two non-linear mathematical models for WBANs are used in the proposed protocols Model 1 and Model 2. Model 1 intends to improve the data transmission rate and Model 2 intends to reduce energy consumption in the WBANs. These models are simulated for fixed deployment and priority-based data transmission, and performance of the network is analyzed under four constraints on WBANs. Design/methodology/approach Advancements in wireless technology play a vital role in several applications such as electronic health care, entertainment and games. Though WBANs are widely used in digital health care, they have restricted battery capacity which affects network stability and data transmission. Therefore, several research studies focused on reducing energy consumption and maximizing the data transmission rate in WBANs. Findings Simulation results of the proposed protocol exhibit superior performance in terms of four network constraints such as residual energy, the stability of the network, path loss and data transmission rate in contrast with conventional routing protocols. The performance improvement of these parameters confirms that the proposed algorithm is more reliable and consumes less energy than traditional algorithms. Originality/value The Model 1 of the proposed work provides maximum data extraction, which ensures reliable data transmission in WBANs. The Model 2 allocates minimal hop count path between the sink and the sensor nodes, which minimizes energy consumption in the WBANs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call