Abstract

A technique for the solution of one-port and two-port scattering equations for complex permittivity and permeability determination is presented. Using a nonlinear regression procedure, the model determines parameters for the specification of the spectral functional form of complex permittivity and permeability. The method is based on a nonlinear regression technique and uses the fact that a causal, analytic function can be represented by poles and zeros. The technique allows the accurate determination of many low- and high-permittivity dielectric and magnetic materials in either the low- or high-loss range. The model allows for small adjustments, consistent with the physics of the problem, to independent variable data such as angular frequency, sample length, sample position, and cut-off wavelength. The model can determine permittivity and permeability for samples where sample length, sample position, and sample holder length are not known precisely. The problem of local minima is discussed. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.