Abstract

We construct a nonlinear least-squares finite element method for computing the smooth convex solutions of the Dirichlet boundary value problem of the Monge-AmpĂšre equation on strictly convex smooth domains in R 2 {\mathbb {R}}^2 . It is based on an isoparametric C 0 C^0 finite element space with exotic degrees of freedom that can enforce the convexity of the approximate solutions. A priori and a posteriori error estimates together with corroborating numerical results are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.