Abstract

ABSTRACTIn this work, the real-time non-destructive testing and evaluation (NDT/NDE) of faulty conductive tubes from eddy current (EC) measurements is addressed and solved in a computationally efficient way by means of an innovative learning-by-examples (LBE) methodology. More specifically, the estimation of the descriptors of a defect embedded within the cylindrical structure under test (SUT) is yielded by combining a non-linear feature extraction technique with an adaptive sampling strategy able to uniformly explore the arising feature space. Predictions are then performed during the on-line testing phase by means of a support vector regression (SVR). Representative results from a numerical/experimental validation are reported to assess the effectiveness of the proposed approach also in comparison with competitive state-of-the-art approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call