Abstract

Motivated by an exact mapping between equilibrium properties of a one-dimensional chain of quantum Ising spins in a transverse field (the transverse field Ising (TFI) model) and a two-dimensional classical array of particles in double-well potentials (the "ϕ4 model") with weak inter-chain coupling, we explore connections between the driven variants of the two systems. We argue that coupling between the fundamental topological solitary waves in the form of kinks between neighboring chains in the classical ϕ4 system is the analog of the competing effect of the transverse field on spin flips in the quantum TFI model. As an example application, we mimic simplified measurement protocols in a closed quantum model system by studying the classical ϕ4 model subjected to periodic perturbations. This reveals memory/loss of memory and coherence/decoherence regimes, whose quantum analogs are essential in annealing phenomena. In particular, we examine regimes where the topological excitations control the thermal equilibration following perturbations. This paves the way for further explorations of the analogy between lower-dimensional linear quantum and higher-dimensional classical nonlinear systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.