Abstract
A nonlinear iteration method for solving a class of two-dimensional nonlinear coupled systems of parabolic and hyperbolic equations is studied. A simple iterative finite difference scheme is designed; the calculation complexity is reduced by decoupling the nonlinear system, and the precision is assured by timely evaluation updating. A strict theoretical analysis is carried out as regards the convergence and approximation properties of the iterative scheme, and the related stability and approximation properties of the nonlinear fully implicit finite difference (FIFD) scheme. The iterative algorithm has a linear constringent ratio; its solution gives a second-order spatial approximation and first-order temporal approximation to the real solution. The corresponding nonlinear FIFD scheme is stable and gives the same order of approximation. Numerical tests verify the results of the theoretical analysis. The discrete functional analysis and inductive hypothesis reasoning techniques used in this paper are helpful for overcoming difficulties arising from the nonlinearity and coupling and lead to a related theoretical analysis for nonlinear FI schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.