Abstract

Facility location, inventory management, and vehicle routing are three important decisions in supply chain management, and location‐inventory‐routing problems consider them jointly to improve the performance and efficiency of today’s supply chain networks. In this paper, we study a location‐inventory‐routing problem to minimize the total cost in a closed‐loop supply chain that has forward and reverse logistics flows. First, we formulate this problem as a nonlinear integer programming model to optimize facility location, inventory control, and vehicle routing decisions simultaneously in such a system. Second, we develop a novel heuristic approach that incorporates simulated annealing into adaptive genetic algorithm to solve the model efficiently. Last, numerical analysis is presented to validate our solution approach, and it also provides meaningful managerial insight into how to improve the closed‐loop supply chain under study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.