Abstract

We present a nonlinear Kirchhoff–Love micro-shell element based on isogeometric analysis (IGA) and couple stress theory. Higher-order NURBS functions are exploited for analyzing the strain gradient effect which automatically fulfill the higher-order continuity requirements. We express the strain gradient elastic formulation in natural curvilinear coordinates, which leads to an efficient numerical tool to examine geometric nonlinearities of thin micro-shell structures. The presented IGA formulation is verified through comparisons to analytical solution, experimental data as well as other popular benchmark problems of nonlinear geometric shells. We believe that the presented formulation is particularly suitable for analyzing two-dimensional materials at larger length scales, which are commonly studied at nanoscale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.