Abstract

The gain spectra of single quantum well (SQW) heterojunction bipolar transistor laser (HBTL) is calculated with the gain coefficients and transparency carrier density as a function of the device structure factors by taking into account intraband relaxation. Inter-well coupling effects in a multiple quantum well (MQW) structure are considered as a correction factor in our approach. We introduce a six-order polynomial expression for a nonlinear carrier-dependent gain of MQW-HBTL considering ground, first excited and second excited states. We show that our gain model is notably more accurate than usual logarithmic equations, particularly in a large signal regime. Using computationally efficient numerical methods with a comprehensive rate-equation-based model, we obtain good agreement with experimental results for small signal, large signal and switching analysis of the SQW and MQW structures. We discuss the influence of different structure factors on the switching behaviour as well as on the optical bandwidth of the HBTL. Specifically, turn-on times (τon) of 160 and 540 ps are obtained for SQW and 4 QW structures, while τon considerably decreases below 100 ps for 6 QWs due to competing effects between tunneling and thermionic emission followed by carrier diffusion over the barriers. Finally, τon can be minimized independently of the QW number when a barrier width of ≈7 nm is used in the HBTL structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.