Abstract

This paper establishes a non-linear finite element model (NFEM) of L4-L5 lumbar spinal segment with accurate three-dimensional solid ligaments and intervertebral disc. For the purpose, the intervertebral disc and surrounding ligaments are modeled with four-nodal three-dimensional tetrahedral elements with hyper-elastic material properties. Pure moment of 10 N·m without preload is applied to the upper vertebral body under the loading conditions of lateral bending, backward extension, torsion, and forward flexion, respectively. The simulate relationship curves between generalized forces and generalized displacement of the NFEM are compared with the in vitro experimental result curves to verify NFEM. The verified results show that: (1) The range of simulated motion is a good agreement with the in vitro experimental data; (2) The NFEM can more effectively reflect the actual mechanical properties than the FE model using cable and spring elements ligaments; (3) The NFEM can be used as the basis for further research on lumbar degenerative diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call