Abstract
We consider the problem of target tracking in wireless sensor networks where the nonlinear observed system is assumed to progress respecting to a probabilistic state space model. This proposition improves the use of the variational filtering (VF) by jointly estimating the target position and optimizing the power scheduling, where the sensor observations are corrupted by additive noises and attenuated by path-loss coefficient. In fact, the quantized variational filtering (QVF) has been shown to be adapted to the communication constraints of sensor networks. Its efficiency relies on the fact that the online update of the filtering distribution and its compression are executed simultaneously. We first optimize quantization for reconstructing a single sensors measurement, and developing the optimal number of quantization levels as well as the minimal power transmitted by sensors under distortion constraint. Then we estimate the path-loss coefficient by maximizing the a posteriori distribution and the target position by using the QVF. The simulation results prove that the adaptive power optimization algorithm, outperforms both the QVF algorithm using uniform power level and the VF algorithm based on binary sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.