Abstract

SUMMARY This paper proposes an alternative approach to the output leastsquares (OLS) seismic inversion for layered-media. The latter cannot guarantee a reliable solution for either synthetic or field data, because of the existence of many spurious local minima of the objective function for typical data, which lack low-frequency energy. To recover the low-frequency lacuna of typical data, we formulate waveform inversion as a differential semblance optimization (DSO) problem with artificial low-frequency data as control variables. This version of differential semblance with nonlinear modeling properly accounts for nonlinear effects of wave propagation, such as multiple reflections. Numerical experiments with synthetic data indicate the smoothness and convexity of the proposed objective function. These results suggest that gradient-related algorithms may successfully approximate a global minimizer from a crude initial guess for typical band-limited data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.