Abstract

Developing an accurate nonlinear reduced order model from simulation data has been an outstanding research topic for many years. For many physical systems, data collection is very expensive and the optimal data distribution is not known in advance. Thus, maximizing the information gain remains a grand challenge. In a recent paper, Bhattacharjee and Matouš (2016) proposed a manifold-based nonlinear reduced order model for multiscale problems in mechanics of materials. Expanding this work here, we develop a novel sampling strategy based on the physics/pattern-guided data distribution. Our adaptive sampling strategy relies on enrichment of sub-manifolds based on the principal stretches and rotational sensitivity analysis. This novel sampling strategy substantially decreases the number of snapshots needed for accurate reduced order model construction (i.e., ∼5× reduction of snapshots over Bhattacharjee and Matouš (2016)). Moreover, we build the nonlinear manifold using the displacement rather than deformation gradient data. We provide rigorous verification and error assessment. Finally, we demonstrate both localization and homogenization of the multiscale solution on a large particulate composite unit cell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.