Abstract

This article addresses a combined approach of sliding mode control (SMC) with generalized predictive control (GPC) to achieve fluid temperature control in the evaporator of a heat recovery steam generator. The evaporator is modelled as a first-order plus dead time process. The model is developed using the experimental data obtained at an actual power plant. An output error identification algorithm is used to minimize the error between the model and the experiments in different operating conditions. A GPC method is exploited to optimize the sliding surface and the coefficients of the switching functions used in SMC. The proposed control schemes are evaluated by thorough simulation for performance and robustness against parameter variations and disturbances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.