Abstract

A model of Sr metabolism was developed by using plasma and urinary Sr kinetic data obtained in groups of postmenopausal women who received four different oral doses of Sr and collected during the Sr administration period (25 days) and for 28 days after cessation of treatment. A nonlinear compartmental formalism that is appropriate for study of non-steady-state kinetics and allows dissociation of variables pertaining to Sr metabolism (system 1) from those indirectly operating on it (system 2) was used. At each stage of model development, the dose-dependent model response was fitted to the four sets of data considered simultaneously (1 set per dose). A seven-compartment model with internal Sr distribution and intestinal, urinary, and bone metabolic pathways was selected. It includes two kinds of nonlinearities: those accounting for saturable intestinal and bone processes, which behave as intrinsic nonlinearities because they are directly dependent on Sr, and extrinsic nonlinearities (dependent on system 2), which suggest the cooperative involvement of plasma Sr changes in modulating some intestinal and bone mineral metabolic pathways. With the set of identified parameter values, the initial steady-state model predictions are relevant to known physiology, and some peculiarities of model behavior for long-term Sr administration were simulated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call