Abstract
In this paper, a feedforward active noise control (ANC) system using a recurrent fuzzy neural network (RFNN) controller based on simultaneous perturbation stochastic approximation (SPSA) algorithm is considered. Because RFNN can capture the dynamic behavior of a system through the feedback links, only one input node is needed, and the exact lag of the input variables need not be known in advance. The SPSA-based RFNN control algorithm employed in the ANC system is first derived. Following this, computer simulations are carried out to verify that the SPSA-based RFNN control algorithm is effective for a nonlinear ANC system. Simulation results show that the proposed scheme is able to significantly reduce disturbances without the need to model the secondary-path and has better tracking ability under variable secondary-path. This observation implies that the SPSA-based RFNN controller eliminates the need of the modeling of the secondary-path.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.