Abstract
This paper extends conditional moment techniques previously developed for the study of nonlinear versions of the LMS algorithm to the study of the effects of quantizers in the finite precision case. Deterministic nonlinear recursions are derived for the mean and second moment matrix of the weight vector about the Wiener weight for white Gaussian data models and small algorithm step sizes /spl mu/. These recursions are solved numerically and shown to be in very close agreement with the Monte Carlo simulations during all phases of the adaptation process. A design example is presented that demonstrates how the theory can be used to select the number of quantizer bits and the adaptation step size /spl mu/ to yield a desired transient behavior and cancellation performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.