Abstract

In this study, the tensile nonlinear responses of composite laminates with ±θns and ±θn/0s layups are investigated. An analytical model that integrates the progressive failure, shear nonlinearity, fiber rotation, and fragmentation is established to characterize the nonlinear tensile behavior. A nonlinear factor is used to describe the shear nonlinearity of the resin matrix, which is governed by shear stress, while progressive damage indexes are determined by normal stresses. The degree of fiber rotation and the fragmentation between layers are analytically formulated. Tensile results from experiments conducted in this study and from others in the literature are used to verify the model’s prediction accuracy. The proposed model provides acceptably good predictions of nonlinear behavior for pseudo-ductile carbon fiber reinforced composite laminates. A sensitivity analysis shows that the dominant model parameter changes from axial modulus to shear modulus, and eventually to transverse modulus as the off-axial angle increases from 0° to 90°.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.