Abstract

A nonlinear model for consolidated geotextile-encased sand columns (GESACs) was formulated in this study. The model is based on the power law and predicts the stress-strain curve of a consolidated GESAC based on the superposition rule, wherein the stress-strain curve of the unconsolidated GESAC is superposed by the stress-strain curve of the soil alone in a consolidated triaxial test. A uniaxial compression test was conducted to study the failure mechanism of the GESAC. In addition, unconsolidated and consolidated triaxial tests on loose GESACs were conducted to investigate the effect of initial stresses on the shear behavior of GESACs. To further investigate the interaction between the soil and geotextile, and to assess the GESAC model, finite element method simulations were conducted. Based on the results, internal lateral stresses developed in the GESAC due to the confining effect of the geotextile, which increases the circumferential tension force on the geotextile while the p-q path of the GESAC approaches the critical state line, and follows the line when the shear strength of the soil is mobilized. The model was verified based on data on dense consolidated GESACs found in the literature, and results have shown good agreement between the measured and predicted data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call