Abstract

Bend stiffeners are polymeric structures with a conical shape designed to limit the curvature of flexible risers and umbilical cables at their uppermost connections, protecting them against overbending and from accumulation of fatigue damage. Thus, they are of vital importance to deep water oil and gas production systems. This work develops a mathematical formulation and a numerical solution procedure for the geometrical and material nonlinear analysis of the riser/bend stiffener system considered as a beam bending model. The structures are separately modeled, which allows the numerical calculation of the contact force along the system arc length. The governing differential equations are derived considering geometrical compatibility, equilibrium of forces and moments, and nonlinear asymmetric material constitutive relations, which leads to a shift in the neutral axis position from the cross-section centroid. The eccentricity and the bending moment versus curvature relation for each cross section are numerically calculated and then expressed by a polynomial power series expansion. A set of four first-order nonlinear ordinary differential equations is written and four boundary conditions are specified at both ends. Once the global problem is solved, the contact force may be promptly calculated. A finite difference method is implemented in Fortran code to obtain the numerical solution. A case study is carried out where linear elastic symmetric and nonlinear elastic asymmetric constitutive models are compared and discussed. The results are presented for the riser/bend stiffener deflected configuration, angle, curvature, and contact force distribution. The results demonstrate that an accurate structural analysis of bend stiffeners depends on a precise assessment of the nonlinear asymmetric polyurethane property.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call