Abstract

Methylmercury is the predominant chemical form of mercury reported in the eggs of wild birds, and the embryo is the most sensitive life stage to methylmercury toxicity. Protective guidelines have been based mainly on captive-breeding studies with chickens (Gallus gallus), mallards (Anas platyrhynchos), and ring-necked pheasants (Phasianus colchicus) or on field studies where whole eggs were collected and analyzed and the effects of the mercury were measured based on the reproductive success of the remaining eggs. However, both of these methods have limitations. As an alternative, we developed a technique that involves extracting a small sample of albumen from a live egg, sealing the egg, returning the egg to its nest to be naturally incubated by the parents, and then relating the hatching success of this microsampled egg to its mercury concentration. After first developing this technique in the laboratory using chicken and mallard eggs, we selected the laughing gull (Larus atricilla) and black-necked stilt (Himantopus mexicanus) as test subjects in the field. We found that 92% of the microsampled laughing gull eggs met our reproductive endpoint of survival to the beginning of hatching compared to 100% for the paired control eggs within the same nests. Microsampled black-necked stilt eggs exhibited 100% hatching success compared to 93% for the paired control eggs. Our results indicate that microsampling is an effective tool for nonlethally sampling mercury concentrations in eggs and, as such, can be used for monitoring sensitive species, as well as for improving studies that examine the effects of mercury on avian reproduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call