Abstract
In general, the induction motor (IM) is extremely nonlinear in nature and frequency dependent. In most cases, the power generated by the IM has a low power factor (PF), which exhibits detrimental effect on the extent to which the whole transmission and distribution system functions. Since there exists more current harmonics as an outcome of minimized PF, the efficiency of the power system suffers due to transmission line heating and voltage distortion characteristics. Therefore, this paper proposes a power factor correction (PFC) method to overcome the aforementioned issues. Here, by the utilization of AC-DC bridgeless SEPIC-Cuk converter, the power quality is improved by reducing reactive power consumption and enabling better control of voltage and current outputs. To maintain the stable DC link voltage with reduced ripples, the adaptive proportional-integral (PI) controller is used in this work. The three-phase voltage source inverter (VSI) transitioning function is controlled by cascaded fuzzy logic (CFL) controller, which is also utilized for regulating the speed of the three-phase IM. Implementing the proposed control strategy improves power quality significantly by reducing total harmonic distortion (THD). The proposed system is simulated in the MATLAB platform and the attained outcomes, it is clear that the proposed system is highly effective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Power Engineering (IJAPE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.