Abstract

A novel dc-dc switching converter consisting of a boost stage cascaded with a buck converter with their coils magnetically coupled is presented. The disclosed converter has the same step-up or step-down voltage conversion properties than the single inductor noninverting buck-boost converter but exhibits nonpulsating I/O currents. The converter control-to-output transfer function is continuous between operation modes if a particular magnetic coupling is selected. The addition of a damping network improves the dynamics and results in a control-to-output transfer function that has, even in boost mode, two dominant complex poles without right-half-plane zeros. An example shows that an output voltage controller can be designed with the same well-known techniques usually applied to the second-order buck regulator. Details of a prototype and experimental results including efficiency, frequency, and time domain responses are presented. The experimental results validate the theoretical expected advantages of the converter, namely, good efficiency, wide bandwidth, and simplicity of control design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.