Abstract

The investigation of fluid-solid systems is very important in a lot of industrial processes. From a computational point of view, the simulation of such systems is very expensive, especially when a huge number of parametric configurations needs to be studied. In this context, we develop a non-intrusive data-driven reduced order model (ROM) built using the proper orthogonal decomposition with interpolation (PODI) method for Computational Fluid Dynamics (CFD) - Discrete Element Method (DEM) simulations. The main novelties of the proposed approach rely in (i) the combination of ROM and FV methods, (ii) a numerical sensitivity analysis of the ROM accuracy with respect to the number of POD modes and to the cardinality of the training set and (iii) a parametric study with respect to the Stokes number. We test our ROM on the fluidized bed benchmark problem. The accuracy of the ROM is assessed against results obtained with the FOM both for Eulerian (the fluid volume fraction) and Lagrangian (position and velocity of the particles) quantities. We also discuss the efficiency of our ROM approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.