Abstract

We propose a non-interior continuation algorithm for the solution of the linear complementarity problem (LCP) with a P0 matrix. The proposed algorithm differentiates itself from the current continuation algorithms by combining good global convergence properties with good local convergence properties under unified conditions. Specifically, it is shown that the proposed algorithm is globally convergent under an assumption which may be satisfied even if the solution set of the LCP is unbounded. Moreover, the algorithm is globally linearly and locally superlinearly convergent under a nonsingularity assumption. If the matrix in the LCP is a P* matrix, then the above results can be strengthened to include global linear and local quadratic convergence under a strict complementary condition without the nonsingularity assumption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.