Abstract
We describe the discovery of a solar neighborhood (d = 468 pc) binary system with a main-sequence sunlike star and a massive noninteracting black hole candidate. The spectral energy distribution of the visible star is described by a single stellar model. We derive stellar parameters from a high signal-to-noise Magellan/MIKE spectrum, classifying the star as a main-sequence star with T eff = 5972 K, , and M = 0.91 M ⊙. The spectrum shows no indication of a second luminous component. To determine the spectroscopic orbit of the binary, we measured the radial velocities of this system with the Automated Planet Finder, Magellan, and Keck over four months. We show that the velocity data are consistent with the Gaia astrometric orbit and provide independent evidence for a massive dark companion. From a combined fit of our spectroscopic data and the astrometry, we derive a companion mass of M ⊙. We conclude that this binary system harbors a massive black hole on an eccentric (e = 0.46 ± 0.02), 185.4 ± 0.1 day orbit. These conclusions are independent of El-Badry et al., who recently reported the discovery of the same system. A joint fit to all available data yields a comparable period solution but a lower companion mass of . Radial velocity fits to all available data produce a unimodal solution for the period that is not possible with either data set alone. The combination of both data sets yields the most accurate orbit currently available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.