Abstract
This paper studies the initial boundary value problem (IBVP) for the dispersive Kuramoto-Sivashinsky equation posed in a finite interval (0, L) with non-homogeneous boundary conditions. It is shown that the IBVP is globally well-posed in the space Hs(0, L) for any s > −2 with the initial data in Hs(0, L) and the boundary value data belonging to some appropriate spaces. In addition, the IBVP is demonstrated to be ill-posed in the space Hs(0, L) for any s < −2 in the sense that the corresponding solution map fails to be in C2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ESAIM: Control, Optimisation and Calculus of Variations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.