Abstract
A complete analysis of heat transfer in rectangular fin arrays has been conducted taking into consideration convection and radiation at all surfaces, as well as radiative exchange between the fins and all neighboring surfaces. The analysis assumes diffuse nongray surfaces and uses the spectral optical properties of stainless steel AISI 430. Three different gray models were proposed in order to assess the effect of the gray assumption on the heat-transfer characteristics. Results are presented for the temperature and radiative-flux distributions along the fin, the radiative flux along the base, the contribution of the radiative component to the overall heat transfer, and the effectiveness of the fin array. Significant deviations in some of these results were found between the nongray model and the gray models. In general, convection was found to be the more effective mode of heat transfer in fin arrays and the effectiveness of the array decreases as the contribution of the radiative component increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.