Abstract

AbstractThe surface energy imbalance, viz. that the turbulent dissipation does not fully account for available energy, has for long been an outstanding challenge in geophysical studies. In this study, we developed a novel approach based on nonequilibrium thermodynamics by representing the atmospheric boundary layer as a heat engine. In addition, an analytically tractable approach was used to estimate the ground heat flux based on Green's function approach, which in turn determines the available energy that drives the atmospheric heat engine. The proposed model was evaluated using heat fluxes measured by eight AmeriFlux eddy covariance towers with atmospheric temperature profiles recorded at adjacent radiosonde sites. The surface energy balance closure can be improved by ~11% over various landscapes, by including the estimated power production from the atmospheric heat engine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call