Abstract
A nonequilibrium theory of a slurry is developed and its practical use is illustrated by a simple stability analysis. Here a slurry is defined as a deformable continuum consisting of a liquid phase containing in suspension a large number of small solid particles which have formed by solidification from the liquid. The liquid is assumed to consist of two components and the solid to contain only one of the two. Consequently, the process of change of phase requires redistribution of material on the scale of the solid particles. This process is assumed to take a finite amount of time, requiring a nonequilibrium macroscopic theory. This theory contains four thermodynamic variables, three to represent the equilibrium state of the binary system and a fourth measuring the departure from thermodynamic equilibrium. The process of microscale diffusion of material is parameterized in the macroscale theory, leading to a Landau-type relaxation term in the equation of evolution of the fourth variable. The theory is simplified to yield a Boussinesq-like set of governing equations. Their practical use is illustrated by analyzing the stability of a simple steady solution of the equations and the effects of a non-zero relaxation time are discussed. A novel instability mechanism involving sedimentation of particles, previously found to occur in the equilibrium case, is found to persist in nonequilibrium, but disappears in the limit of no change of phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.