Abstract

This paper presents results from theoretical and numerical studies of a single-phase, temperature sensitive magnetic fluid operating under steady-state laminar flow conditions in a partially heated thermomagnetic circulation loop under the influence of an external magnetic field (created by a solenoid). A one-dimensional theoretical model has been developed using scaling arguments to characterize thermomagnetic circulation in this loop in terms of the geometric length scales, magnetic fluid properties, and strength of the imposed magnetic field. In parallel to this theoretical analysis, supporting numerical simulations using COMSOL Multiphysics simulation software have been undertaken to obtain data for use in this 1D model. A correlation for the non-dimensional heat transfer (Nusselt number) as a function of the appropriate magnetic Rayleigh number and a correlation for the mass flow rate based on the system’s properties are developed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.