Abstract

A method for non-destructive determination of the initial rotational stiffness of timber joints using the natural frequency of vibration of the beam is presented. The rotational stiffness of the joint is defined as “k”, and the bending stiffness of the member is defined as EI/L. The ratio of joint stiffness to the bending stiffness (k/EI/L or kL/EI) is defined as α. Previous researchers have found that for 1 1. The method accurately classified the joints as pinned or semi-rigid for 90% of the cases. The average percent relative deviation for the field-tested beams with α > 1 was 38%. Percent deviation for α > 1 could be reduced by almost half by taking a 5 mm diameter × 50 mm long sample for density testing. The probability distribution of the joint stiffnesses was characterized using a Weibull distribution. Errors due to assumptions about (1) equal stiffness of joints at each end, (2) existing stress in members, and (3) vibration damping were all studied. The relative impact of each on the results of the method is presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call