Abstract
Network virtualization is a new technology that aims at allowing multiple virtual networks (VNs) to coexist in the same equipment and to hide the heterogeneity of network infrastructure. The critical issue for a given infrastructure provider (InP), is how to provide customized and on demand resources for multiple service providers (SPs) with different Quality of Service (QoS) requirements. The should also fairly distribute the network physical resources, such as bandwidth of each physical link, buffer spaces, and processing cycles at each node. In this paper, we propose a new framework based on game theory, for both link and node dynamic allocation between multiple infrastructure providers (InPs) and service providers (SPs). Our approach focuses on provisioning and managing the physical resources in a virtualized network infrastructure. We propose a two-stage approach based on non-cooperative games. The first one is the resource negotiation game where the SP requests link and node resources from multiple InPs. The InP may reject the SP's request when it can potentially cause network congestion. The second stage of the proposal concerns dynamic resource provisioning and consists of two non cooperative games; the node allocation game and the link allocation game. The objective of both games is to allocate physical resources for different isolated VNs that are sharing the same physical substrate network. In the node allocation game, the proportional share mechanism is used. Every SP assigns a weight and submits a bid to each physical node and thereafter it receives a share proportional to its bid. In the link allocation game we investigate the case when multiple SPs compete for a portion of the available physical network capacity. Simulation results show that the proposed approach achieves high resource utilization, improves the network performance, and fairly distributes the link and node resources between multiple SPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.