Abstract

We consider the problem of subspace clustering with data that is potentially corrupted by both dense noise and sparse gross errors. In particular, we study a recently proposed low rank subspace clustering approach based on a nonconvex modeling formulation. This formulation includes a nonconvex spectral function in the objective function that makes the optimization task challenging, e.g., it is unknown whether the alternating direction method of multipliers (ADMM) framework proposed to solve the nonconvex model formulation is provably convergent. In this paper, we establish that the spectral function is differentiable and give a formula for computing the derivative. Moreover, we show that the derivative of the spectral function is Lipschitz continuous and provide an explicit value for the Lipschitz constant. These facts are then used to provide a lower bound for how the penalty parameter in the ADMM method should be chosen. As long as the penalty parameter is chosen according to this bound, we show that the ADMM algorithm computes iterates that have a limit point satisfying first-order optimality conditions. We also present a second strategy for solving the nonconvex problem that is based on proximal gradient calculations. The convergence and performance of the algorithms is verified through experiments on real data from face and digit clustering and motion segmentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.