Abstract

Peripheral oxygen saturation (SpO <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> ) is one important vital sign to be monitored in individuals, whose health is fragile, such as the elderly. Contactless SpO <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> monitoring using RGB cameras has been already developed with satisfactory results. This work explores the case of achieving an acceptable level of performance, when the lightning conditions are not optimal, particularly during night time, by processing solely infrared low-cost camera recordings. The Eulerian Video Magnification (EVM) technique was used to enhance the subtle differences in skin pixel intensity in the facial area. Two approaches were explored for performing regression: one using 12 novel features extracted from the amplified photoplethysmography (PPG) signal and Generalized Additive Models and a second using a 3D Convolution Neural Network (CNN) architecture on the raw amplified forehead video. The root mean square error in the estimated SpO <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> levels using both methods is minimal and in the accepted range for these applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.