Abstract

Herpes simplex virus type 1 (HSV-1) establishes lifelong latent infection in sensory neurons of the peripheral nervous system. During HSV latency, the latency-associated transcripts (LATs) are the only viral transcripts abundantly expressed. The most abundant form of LATs is a 2-kb stable intron spliced from a primary transcript (mLAT). It has been previously reported that a non-consensus branch point influences the stability of the intron (in vitro) in cells transfected with plasmid constructs (J. Virol. 71 (1997) 5849; J. Virol. 71 (1997) 4199). However, it is unknown whether this branch point is important in determining LAT stability in vivo (in the context of virus). To study the role of this stable intron in HSV-1 infection, we have constructed a mutant virus KOS-CONS in which the branch point has been mutated to consensus branch point nucleotides. The accumulation of the 2-kb intron in KOS-CONS-infected cells was greatly reduced. The LAT intron was not detectable in KOS-CONS-infected mouse trigeminal ganglia (TG) during acute and latent phase infection by Northern blot analysis. Replication of the KOS-CONS and the wild-type KOS viruses on Vero cells was determined to be similar, as was the level of HSV-1 DNA in mouse trigeminal ganglia during acute and latent phase infection. Using the mouse TG explant model, the reactivation pattern of both viruses was shown to be similar. Our data suggest that the unique branch point plays a significant role in determining the stability of LAT intron in vivo, but that the stability of the intron does not appear to affect HSV-1 replication, the establishment of latency, or viral reactivation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call