Abstract
We analyze a new nonconforming Petrov-Galerkin finite element method for solving linear singularly perturbed two-point boundary value problems without turning points. The method is shown to be convergent, uniformly in the perturbation parameter, of orderh 1/2 in a norm slightly stronger than the energy norm. Our proof uses a new abstract convergence theorem for Petrov-Galerkin finite element methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.