Abstract

A noncommutative probability theory is developed in which no boundedness, finiteness, or “tracial” conditions are imposed. The underlying structure of the theory is a “probability algebra” ( a , ω ) (\mathcal {a},\omega ) where a \mathcal {a} is a *-algebra and ω \omega is a faithful state on a \mathcal {a} . Conditional expectations and coarse-graining are discussed. The bounded and unbounded commutants are considered and commutation theorems are proved. Two classes of probability algebras, which we call closable and symmetric probability algebras are shown to have important regularity properties. The canonical algebra of quantum mechanics is considered in some detail and a strong commutation theorem is proven for this case. Moreover, in this case, isotropic normal states, KMS states, and stable states are defined and characterized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.