Abstract

Phoma medicaginis (syn. Ascochyta medicaginicola Qchen & L. Cai) causes spring black stem and leaf spot, an important disease of alfalfa and annual medics. P. medicaginis forms uninucleate conidia in melanized pycnidia and is genetically tractable using Agrobacterium mediated transformation (ATMT), resulting in random integration of T-DNA that occasionally generates pycnidial mutants. The T-DNA tagged mutant, P265 displayed smaller pycnidia and more aerial hyphae than the wild type. A single T-DNA disrupted a putative noncanonical poly(A) RNA polymerase gene, Pmncpap1, which in yeast interacts with ribonucleotide reductase (RNR). As in yeast mutants, P265 showed sensitivity to hydroxyurea (HU), a RNR inhibitor. To characterize the role of Pmncpap1, targeted ΔPmncpap1 mutants were created using a hygromycin selectable marker flanked by 1 Kbp regions of Pmncpap1. ΔPmncpap1 mutants possessed similar morphological features to those of P265. The plasmid for rescue of PmncPAP1, pCAM−Nat1 (nourseothricin selection) was constructed and used to introduce full-length PmncPAP1 into mutants. Rescued P265 showed partial recovery of wild type and the original T-DNA was lost due to homologous integration. To our knowledge, this is the first ncPAP to be examined in a filamentous fungus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.