Abstract

Chronic kidney disease is a major global health problem affecting millions of people; kidney tissue engineering provides an opportunity to better understand this disease, and has the capacity to provide a cure. Two-dimensional cell culture and decellularised tissue have been the main focus of this research thus far, but despite promising results these methods are not without their shortcomings. Polymer fabrication techniques such as electrospinning have the potential to provide a non-woven path for kidney tissue engineering. In this experiment we isolated rat primary kidney cells which were seeded on electrospun poly(lactic acid) scaffolds. Our results showed that the scaffolds were capable of sustaining a multi-population of kidney cells, determined by the presence of: aquaporin-1 (proximal tubules), aquaporin-2 (collecting ducts), synaptopodin (glomerular epithelia) and von Willebrand factor (glomerular endothelia cells), viability of cells appeared to be unaffected by fibre diameter. The ability of electrospun polymer scaffold to act as a conveyor for kidney cells makes them an ideal candidate within kidney tissue engineering; the non-woven path provides benefits over decellularised tissue by offering a high morphological control as well as providing superior mechanical properties with degradation over a tuneable time frame.

Highlights

  • Chronic kidney disease (CKD) is a major worldwide health problem which attributes to 1.5% of deaths worldwide [1]

  • Cryogenic electrospinning produced a scaffold 5 times thicker than spinning with traditional methods, this rise in thickness dramatically increases the porosity from 82.5% for large fibres spun using the same parameters to 97%, but it does come at the cost of mechanical strength, Table 1

  • Cells within the Kidney do not exist within the two dimensional axis of cell culture plastic, with greater amounts of research underlining the importance of a 3D structure [17, 44]. 3D kidney tissue engineering has focused on the use of decellularised tissue with promising results [25, 45]; this method is not without its shortcomings, with issues surrounding decontamination [46] and a lack of a standardized approach to decellularisation leading to a variation between scaffolds [21, 26, 27]

Read more

Summary

Introduction

Chronic kidney disease (CKD) is a major worldwide health problem which attributes to 1.5% of deaths worldwide [1]. In 2016 there were 5275 people on the transplant list in the UK alone [3], this places huge stresses on health care providers as demand outstrips supply. Recent strategies to overcome these shortcomings in transplants are mainly focused on social policy with a new system of presumed consent being proposed [4]. Additional to this there are new avenues and endeavours in bioartificial kidney devices acting as miniaturised implantable dialysis devices which are showing great promise [5]. Kidney tissue engineering is one avenue that could provide a better basis for treatment and understanding of CKD and has the unique potential to help meet the ever-growing demand for organs

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call