Abstract
Introduction: An electrically stimulated intermittent fatigue test using mechanomyography was recently proposed as a possible tool for detecting clinically relevant changes in muscle function. This study was designed to determine whether the proposed test can detect additional fatigue when it should be present. Methods: Subjects (n = 10) underwent two trials each (occluded and normal blood flow) with a standardized fatigue protocol on the Ankle Dorsiflexors (AD) and Wrist Extensors (WE) using a clinical electrical stimulator. Results: Mean normalized twitch acceleration was strongly predictive of mean normalized torque (R 2 = 0.828). The WE experienced lower twitch magnitudes throughout the tourniquet trial (10.81 ± 1.25m/s2) compared to normal blood flow (18.05 ± 1.06m/s2). The AD twitches were overall reduced in the tourniquet trial (3.87 ± 0.48m/s2) compared with the control trial (8.57 ± 0.91m/s2). Conclusion: Occluding blood flow to a muscle should cause greater muscle fatigue. The ability to detect reduced contraction magnitudes during an electrically stimulated fatigue protocol resulting from low blood flow suggests the proposed test may be capable of detecting clinically relevant muscle deficits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Rehabilitation and Assistive Technologies Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.