Abstract

Plant defensin AtPDF2.6 is not secreted to the apoplast and localized in cytoplasm. AtPDF2.6 is mainly expressed in root vascular bundles of xylem parenchyma cell, and significantly induced by Cd stress. AtPDF2.6 detoxicate cytoplasmic Cd via chelation, thus enhanced Cd tolerance in Arabidopsis. In order to detoxify the heavy metal cadmium (Cd), plants have evolved several mechanisms, among which chelation represents the major Cd-detoxification mechanism. In this study, we aimed to identify a new defensin protein involved in cytoplasmic Cd detoxification by using plant molecular genetics and physiological methods. The results of bioinformatic analysis showed that the Arabidopsis thaliana defensin gene AtPDF2.6 has a signal peptide that may mediate its secretion to the cell wall. Subcellular localization analysis revealed that AtPDF2.6 is localized to the cytoplasm and is not secreted to the apoplast, whereas histochemical analysis indicated that AtPDF2.6 is mainly expressed in the root xylem parenchyma cells and that its expression is significantly induced by Cd. An in vitro Cd-binding assay revealed that AtPDF2.6 has Cd-chelating activity. Heterologous overexpression of AtPDF2.6 increased Cd tolerance in Escherichia coli and yeast, and AtPDF2.6 overexpression significantly enhanced Cd tolerance in Arabidopsis, whereas functional disruption of AtPDF2.6 decreased Cd tolerance. These data suggest that AtPDF2.6 detoxifies cytoplasmic Cd via chelation and thereby enhances Cd tolerance in Arabidopsis. Our findings accordingly challenge the commonly accepted view of defensins as secreted proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call