Abstract
The intercalation of metal is a promising method for the modulating electronic properties in transition metal dichalcogenides (TMDs). However, there still lacks enough knowledge about how the intercalated atoms directly impact the two-dimensional structural layers and modulate the band structures therein. Taking advantage of X-ray absorption fine structure and angle-resolved photoemission spectroscopy, we studied how Cu intercalation influences the host TaSe2 layers in Cu0.03TaSe2 crystals. The intercalated Cu atoms form bonds with Se of the host layers, and there is charge transfer from Cu to Se. By examining the changes of band dispersions, we show that the variation of electronic structures is beyond a simple rigid band model with merely charge doping effect. This work reveals that the unusual change of band dispersions is associated with the formation of bonds between the intercalated metal elements and anion ions in the host layers, and provides a reference for the comprehensive understanding of the electronic structures in intercalated materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.