Abstract

In this study, a Newton–Raphson-based iterative method has been proposed to obtain dielectric constants accurately from measurements. The originalities of the approach lie in its applicability at non-resonant frequencies, which brings a significant experimental simplicity by avoiding critical coupling, expansion of available frequencies in different bands with the same cost-efficient low-Q (≈60) cavity. The direct problem involves either measuring power values inside a cavity (14.6 × 5 × 20.6) cm via a spectrum analyzer or simulating the complete setup via CST-MWS software at one of the non-resonant modes, 1.5 GHz. The solution to the inverse problem provides fastly converging results with an error rate of 1% for the unknown permittivities. The experiments were carried out using five different liquid samples even though the proposed technique does not have a limitation on solid materials. Applicability and the effectiveness of the introduced method is illustrated in detail and comparisons with the perturbation method is provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call