Abstract

A simple and non-radioactive complement-dependent cytotoxicity assay was developed to determine the relative potency of an anti-CD20 mAb, IDEC-C2B8. The assay measures the relative number of viable cells based on the uptake and metabolism of the redox dye, Alamar blue. A linear relationship between the relative fluorescence unit generated and the number of viable cells was demonstrated. The assay is simple, has high throughput (performed in 96-well microtiter plates), and shows reproducible dose–response curves in the concentration range of 0.02–3.3 μg/ml. With intra-assay variability of 5–12%, interassay variability of 6–10% and spike recoveries of 101–109%, the assay has high precision and accuracy. Specificity was demonstrated by the lack of activity of immunoglobulins that do not bind CD20, or anti-CD20 antibody isotype (gamma 4) which does not bind complement. The assay is able to detect degradative changes in the molecule caused by heat, light and proteolytic treatments, suggesting its use as a stability-indicating method. Finally, the Alamar blue method compared favorably with other more conventional methods used to assess cell viability. The assay has the desired properties for use as a potency assay for quality control testing of anti-CD20 mAb.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.