Abstract

A complete quantum addition machine is presented and compared with methods employing unitary transformations first. A quantum half-adder circuit shown earlier can be implemented into each cell of a 1D cellular automaton. An electric Aharonov–Bohm effect version of the quantum circuit is used to illustrate this implementation. Whatever a quantum Turing machine can achieve is realized in the cellular automata architecture we propose here. The coherence requirement is limited to one cell area. The magnetic flux needed is 0.1Φ0, corresponding to 0.414mT for a ring area of 1 square micron or an electric potential of 0.414mV at 1ps with an energy dissipation of 0.041eV per iteration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.