Abstract
Obtaining the aerodynamic performance of the turbine blade by Computational Fluid Dynamics (CFD) methods is accurate. However, it consumes time and computational resources. This paper proposes an evaluation method based on Convolutional Neural Network (CNN) and Artificial Neural Network (ANN) to obtain the aerodynamic performance of the turbine blade accurately and quickly. Compared with the existing data-driven modeling methods, this method innovatively introduces the Residual Network (ResNet), employs a transfer learning strategy for network design, and realizes the automatic extraction of blade profile features and non-parametric input. In processing boundary conditions, the ANN is utilized to fuse the blade profile features with the boundary conditions to realize the mapping between blade profile and aerodynamic performance under different conditions. In addition, to minimize the prediction deviation caused by the severely uneven distribution of the data set, we combined ensemble learning with transfer learning and proposed a two-step prediction strategy. The numerical simulations results show that the ResNet-ANN model established in this paper has a prediction relative error of 5 % on turbine blade aerodynamic parameters under various working conditions. The error is reduced by more than 90 % under −40°-10° incidence angle of incoming flow compared with the empirical model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.